Rae Snape – Headteacher and National Leader of The Spinney Primary School, Cambridge

raeRae Snape is the Headteacher and National Leader of The Spinney Primary School, Cambridge. She is famous for carrying flamingos with her as a symbol of hope. She spoke at multiple educational conferences, including the “Educated Brain” conference hosted by Cambridge University, and our own CEN seminar. Here, she shares inspirational resources to bring educational neuroscience research into the classroom, putting them into perspective with her core pedagogical values.

Thank you Rae for taking the time to answer our questions. Firstly, what are the core values you aim to implement in the Spinney School?

Our core values are Child-centredness, Teamwork and Community, Excellence, Learning, Improvement, Responsibility, Optimism.  These values successfully inform both the long term strategic vision and the quotidian work of the school.

The intention of our school curriculum is to ensure our young people flourish in five domains; personal, interpersonal, academic, societal and global. We describe ourselves as #pragmaticians. We train our young people to do well in tests and we teach for life!

Our curriculum is designed to teach the statutory national programmes of study in addition to promoting positive behaviours and attitude, and good personal development through the global competencies for deep learning: character education, citizenship, communication, creativity and imagination, critical thinking & problem solving, compassion, and collaboration. Our Spinney Curriculum Intent is:

“We want our children to be happy today, fulfilled in the future and able to make their world an even better place.”

What does educational neuroscience mean to you?

Education neuroscience is a relatively new phenomenon in our profession.  But it is very exciting and has enormous potential to support us to do what we do well and to do that even better!

Can you give some examples of how a scientific approach to education has helped your school?

Having a scientific approach has helped ensure that we take an evidence based approach to teaching in our school to ensure that our curriculum is effective, efficient and enjoyable!

We have a number of examples of scientific approaches to education that have helped our work:

Where possible we try to integrate research and scientific approaches into our teaching. Access to research and scientific approaches has become much easier through blogs and social media and this is a great way for education and the research communities to connect. If we come across something that is beneficial and transferable, one of the teaching faculty will read about it and share it with the rest of the team. We will then discuss it as a faculty and try it out in our classrooms.

Are there any particular strategies you use, that are really successful in your lessons?

Particular evidence based strategies include:

  • STEP4SEAS – Dialogic Literary Gatherings of classic texts promoting improved academic outcomes and social cohesion
  • Mind Up – Combines an understanding of basic neuroscience, daily mindfulness practice, and positive psychology
  • Maths No Problem – An evidence based approach to teaching maths with a focus on creativity, collaboration and problem solving
  • EmpathyLab – EmpathyLab builds children’s empathy, literacy and social activism through a systematic use of high quality literature.
  • Relational Schools Foundationto improve society by strengthening the quality of relationships between people, starting with children in schools.

How do you evaluate their effectiveness?

Children leave our school capable, confident and happy, with positive self-esteem and a love of learning.

In addition results in Standardised National Tests at the end of Key Stage 1 (age 7) and Key Stage 2 (age 11) in Reading, Writing, Maths and Science are higher than Local and National results and progress through the school for all children from their starting points is very good.

Are there areas where you think research should focus next (i.e. what are the important gaps in our understanding)?

I have recently learned about a pedagogic approach developed by Kate McAllister called Hive Learning. This is where the children are responsible for researching and sourcing information and facts on a subject (such as the Vikings) and then collaborate to turn it into teachable content.  I would like to know whether this approach with the children taking the lead would result in better memorisation and retention than typical teacher led instruction.

Are there any tips you would like to give to facilitate partnerships between researchers and educators?

Building positive, reciprocal relationships are key, so meeting face to face and talking things through with the headteacher and then the administrative team is really important! There’s a lot of admin to coordinate before a research project can happen in a school including safeguarding checks and induction, securing parental permissions and finding an available time and space for the research to be undertaken. Once this is all in place researchers need to be as self-managing as possible as there is very little additional human resource to help out. That being said it is also important for researchers to be flexible. Despite the best laid plans it is possible that a researcher could turn up and the group that they are expecting to work with is out on an educational visit – so patience and understanding is key!  The ideal researchers are positive, undemanding, friendly, well-organised, are able to make their own cups of tea and will also help out with the dishwasher rota!

This paper “Lessons for Successful Cognitive Developmental Science in Educational Settings: The Case of Executive Functions” by Michelle Ellefson, Sara Baker and Jenny Gibson, University of Cambridge Faculty will be of interest to readers. “The article gives a reflective account of lessons learned from the experiences of three cognitive developmental scientists conducting psychological research in educational settings” and includes experiences of working in The Spinney.

Thank you very much Rae for your time!

You can follow Rae on Twitter at @RaeSnape

CBCD Anniversary

The Centre for Brain and Cognitive Development turned 21! The research centre was born in 1998 at Birkbeck University, and has, since then, steadily contributed to foster our understanding of children’s development. More specifically, the CBCD focuses on the relation between postnatal brain development and changes in perceptual, cognitive, and linguistic abilities of typically and atypically developing children.

cbcd_pic

To celebrate the anniversary, a two-days event was held at the Mary Ward House on the 15th and 16th of November. Forty speakers presented their research. The multidisciplinary approach of the CBCD could not be more salient. Studies used a broad variety of methods, including Electroencephalography, Near Infrared Spectroscopy, genetic analyses, or eye-tracking. Multiple areas of knowledge were covered, such as the development of body awareness and goal-directed actions, the organisation and reorganisation of brain networks during language development, or the development of attention and interpersonal communication in typically developing children and in children with autism. Over 15 000 babies and their families came to the Centre, making all these advances possible.

The anniversary was also the opportunity to celebrate the international outreach of the Centre, collaborations being carried out with multiple European countries, the USA, Gambia and India. This is not to forget the diversity of the 125 doctoral students and 65 postdocs who have been trained at the Centre, and who will carry their legacy across the world.


o The program below will give you an overview of the range of speakers and themes that were addressed at the anniversary.

o You can also read Annie Brookman-Byrne’s report about the anniversary, published in the Psychologist. It is full of anecdotes and fun facts about the CBCD. 


Program

cbcd-21st-anniversary-schedule-_page-0001cbcd-21st-anniversary-schedule-_page-0002cbcd-21st-anniversary-schedule-_page-0003

Dr. Stuart Ritchie – Polygenic prediction of cognitive traits

The Centre for Educational Neuroscience had the pleasure to receive Dr. Stuart Ritchie for a talk on polygenic scores, and their association with cognitive traits.

You can find Stuart’s most recent publications here, and follow him on Twitter @StuartJRitchie

Me, Human – Our brain as the repository of evolution

We are all individuals, but we acknowledge that we might have inherited grandma’s nose or dad’s extrovert personality. Have you ever thought about what physical and psychological traits, we humans as a species, have inherited from our ancestors?

me_human_pic3

These are key questions addressed by the “Me, Human” project lead by Dr Gillian Forrester. As she tells it: “As a child, I was fascinated by our closest living relatives – the great apes. I wondered – what do gorillas and chimps think? How similar is their experience of life to mine? I scratched this itch by watching documentaries, reading books and eventually taking degrees in San Diego and Oxford. It was during my studies that I started to learn about brains and how they control behaviour. What struck me as truly incredible was that there are parts of the human brain that come from when humans and fish shared a common ancestor – over 500 million years ago!”

As humans, we are able to think and act in ways unlike any other animal on the planet. Because of these unique capabilities, it is easy to forget that modern human abilities have their origins in a shared evolutionary history. Although we are bipedal and comparatively hairless, we are indeed great apes. In fact, we are not even on the fringes of the great ape family tree – we are genetically closer to chimpanzees than chimpanzees are to gorillas. As such, we share many brain and behaviour traits with our great ape cousins. But, our similarities to other animals date back much farther than our split with an ancestor common to both humans and great apes (approximately 6 million years ago). Some brain and behaviour traits date back over 500 million years –present in early vertebrates and remain preserved in modern humans. It is our similarities and differences to other species that allow us to better understand how we came to be modern humans.

One of our oldest inherited traits is the ‘divided brain’. While our left and right halves of the brain (hemispheres) appear physically similar, they are in charge of different behaviours. Animal studies have highlighted that fishes, amphibians, reptiles, and mammals also possess left and right hemispheres that differentially control certain behaviours. The divided behaviours of these animals provide a window into our ancestral past, telling the story of our shared evolutionary history with early vertebrates.

Studies suggest that the right hemisphere emerged with a specialisation for recognising threat in the environment and controlling escape behaviours and the left hemisphere emerged as dominant for producing motor action sequences for feeding. The divided brain allows for any organism to obtain nourishment whilst keeping alert for predators. We can think of the brain as acting like an ‘eat and not be eaten’ parallel processor.

Considering the consistency in brain side across different animal species, it seems likely that there has been a preservation of these characteristics through evolutionary time. Effectively, we have lugged our useful brain and behavioural traits with us throughout our evolutionary journey. However, little is known about how these old brain traits support modern human behaviours like the way we navigate social environments, kiss, embrace, nurture babies and take a selfie! – inhibiting a better understanding of how, when and why our human unique capabilities emerged and also how they still develop during human infancy and childhood.

In order to answer these questions, scientists from Birkbeck, University of London and collaborating institutions ran the Me, Human live scientific experiment at the Science Museum this summer. This multidisciplinary team of scientists at all levels of their careers from undergraduate students in psychology and biological anthropology to senior academics at leading London universities invited over 1,700 visitors to take part, using their eyes, ears and hands to find out how their ancient brain was influencing their behaviour.

me-human-team-at-sci-museum

Participants learnt about cutting-edge research and engaged with fun psychology experiments from solving puzzle boards, testing their grip strength and holding and manipulating surprise objects!  Individuals would watch their brain in action, using portable brain-imaging technology as well as put on our magic headphones to test how their brains processed speech.

me_human_pic2

All this data will shed light on how we, as humans, share a common evolutionary history with other animals – revealing our extraordinary connection to the natural world.

me_human_pic

* Note that the specialisations of the left and right hemispheres are presented here within the context of evolution. As explain on our resource “How the Brain Works”: it does not mean that people differ in how much they favour using their ‘left brain’ or their ‘right brain’ and that this produces different cognitive styles and personalities. That’s a brain myth.

Julia Hofweber – Bilingualism and Executive Functions

In this short video, Dr. Julia Hofweber gives an overview of her talk about “The effects of code-switching on bilinguals’ executive functions”.

Julia carried out this work during her PhD program at the University of Reading. She is now a postdoctoral researcher at the Department of Psychology and Human Development at UCL, investigating implicit learning in the context of sign language acquisition with Chloe Marshall.

You can find her publications here.

Fun facts about “How the Brain Works”

 mt_pic

In this blog, Michael Thomas, Director of the Centre for Educational Neuroscience, shares some fun facts about the brain. More explanations to be found on the website “How the Brain Works
What is the most common misunderstanding about the brain?
That it stops being plastic when you’re older. The brain is plastic throughout the lifespan. Else you wouldn’t remember anything.
Learn more on Learning

 

If you were designing a brain from scratch is there anything you would do differently?
Having to take the brain off-line for a third of its operational history (during sleep) seems a bit of flaw. That’s 20-30 years lost when we could be doing something useful (though, in the dark, obviously). We need to sleep because the brain thinks with neurons, and learns with multiple neural systems. Neurons need to be metabolically refreshed during the night, and memories consolidated in brain connections. Even your phone can still be used while its recharging…
Learn more on Sleep

 

What feature of how the brain works is hardest to implement in artificial intelligence?
All the background knowledge that we take for granted when we’re experiencing the world and thinking about it. Researchers called this ‘context’, the expectations and knowledge we bring to every situation, about what’s likely to happen, who we’re likely to meet, what they’ll expect of us, what we’re likely to see and need to do. This is hard to implement because we’re usually not conscious of all this knowledge. Expectations make computations much simpler. Artificial intelligence that doesn’t have this human background knowledge faces much tougher computational challenges, and ends up being very narrow and inflexible in its abilities.
Learn more on Prediction
What is the most unappreciated thing our brains do?
Reach out and pick up a mug of coffee without toppling forward. Arms are heavy, you have to lean back as a counter-balance. Did you even know you were doing that?
Learn more on the Cerebellum

 

brain_filler

For more information, grab a cup of coffee / tea and visit How the Brain Works“.

Megan Sumeracki, co-founder of the Learning Scientists

megansMegan Sumeracki is an Assistant Professor at Rhode Island College, and the co-founder of the Learning Scientists. Since its creation in 2016, the collaborative group has become a key reference in EdNeuro, broadcasting various resources to better understand learning processes and learning strategies (e.g. podcasts, blog posts, videos). In this blog written for the Centre for Educational Neuroscience, Megan tells us a bit more about the birth of the Learning Scientists, and about her ongoing projects.

Creating The Learning Scientists

In January 2016, I was trying out a new assignment integrating social media into one of my classes. I wanted to teach my students about science communication, particularly how research can be applied in “real life.” I was also thinking a lot about the research I was doing and whether it would ever have an impact. At the same time, Yana Weinstein was having similar thoughts, and we very organically started a Twitter account called @AceThatTest designed to help students find effective study strategies. The account turned into our website, learningscientists.org, and the resources grew organically. We realized quickly that the best way to have an impact on education was to focus on bidirectional communication with teachers, and in that way indirectly help the students. As the project has grown, we have had the opportunity to talk with a lot of teachers around the world about science of learning research, and are always learning from teachers about what research questions would best serve education.

Collaborating with the Learning Agency

As a part of my work with the Learning Scientists, we were thinking about ways to create more free resources aimed at how to implement effective learning strategies in classrooms, and we wanted to focus on how the strategies might be applied in specific content areas. Ulrich Boser, the founder of the Learning Agency, was thinking along the same lines. Our Program Officer at Overdeck, Sarah Johnson, suggested we connect and work together. The project was called “The Science of Learning in Practice”, and involved pairing researchers and teachers to implement evidence-based learning strategies into the classroom. Videos were created to showcase these partnerships; these videos now serve as long-term resources for educators and researchers interested in educational neuroscience. The Learning Agency applied for the grant officially, and I served as a consultant on the grant working on two of the videos. These videos were about dual coding and interleaving practice.

This project was particularly relevant for my research. One focus of my program of research is how we can teach students to effectively utilize learning strategies to improve overall academic success. In this project with the Learning Agency, I was able to work together with teachers to figure out ways to implement science of learning strategies into their classrooms, making it a good fit for me.

I learned a lot throughout this process, and it has had an influence on the way I talk about the strategies with other teachers and my own students. In this blog, I talk about some of the things that I learned and note how truly rewarding it was to work with the two teams of teachers. You can read more about my work with the dual coding team in Memphis here.

You can follow Megan and the Learning Scientists on Twitter @DrSumeracki and @AceThatTest.

Welcome to Stanford’s Brainwave Learning Center by Liz Toomarian

liz-toomarianCan you describe the Brainwave Learning center and your role?

The Brainwave Learning Center (BLC) is a unique partnership between researchers at Stanford University and Synapse School, an independent K-8 school in nearby Menlo Park, CA. The BLC comprises multiple synergistic initiatives, including: curriculum support for teachers, unique neuroscience learning opportunities, and leading-edge scientific research on the developing mind and brain, which is conducted in our on-site EEG lab. The hope is that by building deep relationships between cognitive neuroscience researchers and members of the school, we can more effectively explore how brain activity is transformed through learning experiences, and how those insights can, in turn, enrich how we experience education.

As the Director of the BLC, I’m leveraging my background in cognitive neuroscience, educational psychology, and science outreach to act as a liaison between these two communities. I’m part of an interdisciplinary team of researchers at Stanford, led by Dr. Bruce McCandliss, which is designing novel ways to use neuroscience to better understand the cognitive processes underlying skills such as reading or early numeracy. I’m also a staff member at Synapse (aptly named!), so I actually spend most of my time at the school. We’ve set up a fully functional, on-site EEG lab — the Brainwave Recording Studio — where students not only participate in research studies, but also learn about how and why we’re conducting EEG research.

What’s the benefit of having a neuroscience researcher in a school?

As a school staff member, I’m fully embedded in the daily lives of the teachers and students at Synapse. In addition to conducting research, I teach science elective courses, do classroom visits to talk about neuroscience and being a neuroscientist, attend and participate in staff meetings, and even supervise students at recess! All of these activities familiarize me with the culture of the school and allow me to develop authentic relationships with both the teachers and the students.

blc_img_2311This approach also means that students are much more comfortable and engaged when they participate in our EEG studies because they are already familiar with our tools, our space, and most importantly, with me and the rest of our team. Another key advantage to being on-site is that students can participate in a 45 minute experiment during the course of the school day and go right back to class or recess. This sets us up really nicely for rich longitudinal studies of brain development, and also makes participation much more accessible.

As a researcher now working primarily in a school, what have you learned about teachers?

One thing I’ve learned about teachers is that they have so many research ideas! Because they work closely with their students every day, witnessing the daily challenges and successes, they have an incredible wealth of insight into cognitive phenomena and patterns that emerge over time. For example, our music director shared that over the years she’s noticed a connection between inability to match pitch and certain learning difficulties, such as with early reading. This led to a discussion about congenital amusia, the hypothesized link between phonological awareness/auditory deficits and dyslexia, and how we might investigate that connection. In fact, a recent study has shown support such a link (Couvignou, Peretz, & Ramus, 2019)!

I’ve also had rich conversations with teachers about topics like the neural basis of second language acquisition and the cognitive benefits of physical activity. I’ve really enjoyed exploring these topics with active practitioners, and would highly recommend that anyone doing educationally-relevant research develop a relationship with teachers! I wish I had done so sooner in my career. To account for this perspective, our group at Stanford is working closely with teachers at Synapse as we develop our research questions and protocols for the coming school year. One way we’re doing this is by organizing a listening and brainstorming session with teachers during summer inservice days.

What are some examples of activities/programs/initiatives you’ve started in this role?

We’ve accomplished quite a bit since the Brainwave Learning Center was established less than six months ago. We have a BLC classroom, where students explore commercially-available brainwave-sensing tools (e.g. Backyard Brains), make neuroscience crafts, experience sensory illusions, and curriculum specific lessons. For instance, first and second grade students learned about the concept of reaction time by seeing how fast they could catch a falling ruler, in conjunction with their science unit on the human body. I’ve also conducted small seminars with middle school students on the brain basis of sleep, adolescent brain developments/risk taking, and cognitive control. Middle schoolers also had the opportunity to hold real human and animal brains and devised their own EEG experiments in my science elective class. Five middle school students acted as research assistants for the BLC by reviewing scholarly research articles (including reviewing an article for Frontiers for Young Minds) and consulting on our study design.

blc_logo_noline

Is this a unique approach or are there other similar institutions around the world doing this kind of thing? If so, where are they and do you / how do you connect with them?

While no one has taken this kind of multifaceted approach to educational neuroscience, there are several groups that are doing school-based EEG research, such as Nienke van Attevelt at Vrije Universiteit Amsterdam, Jennie Grammer at UCLA, and Suzanne Dikker/David Poeppel at NYU. The NYU team, including Wendy Suzuki and Ido Davidesco, has a high school program called Brainwaves, which combines teacher professional development with neuroscience outreach and curriculum. We worked with Jennie Grammer when we were just starting the BLC to learn more about her lab’s work in schools, including best practices for communicating with parents about the research and unique challenges of actually collecting EEG data in schools. In terms of the teacher experience, the Center for Transformative Teaching and Learning is based in a school and has been incorporating MBE and learning sciences research into professional development. Notably, however, there hasn’t really been an attempt to combine in-school research with a fully-embedded neuroscientist facilitating teacher PD and fostering general student engagement and curiosity around neuroscience. To my knowledge, we are the first group to attempt this much more integrative approach, and I think the field is really moving towards this kind of model.

What’s been the response from families? Teachers? Students?

The response has been overwhelmingly positive! We have been really heartened by how supportive and encouraging both parents and teachers have been about this initiative. I had no idea how teachers were going to feel about working together, but the Synapse teachers have been such a pleasure to work with. They’ve actively brought me into the conversation when they are planning curriculum and have been very supportive of things like occasional pullouts for research sessions.

I’ve also been getting positive feedback from parents. One parent sought me out at a school event to tell me that all week her young son had been talking about activities and lessons he’d learned in the BLC. He had recently been diagnosed with dyslexia, so learning about individual differences in brain and behavior in a school context helped to support the kinds of conversations that were happening at home.

At the end of the year, when I asked students for ideas about how to grow the BLC in the coming school year, many students asked for more opportunities to get involved in research, wear the EEG net, and learn more about brains- I take that as a very good sign!   

You can keep up with Liz and her work by following her on Twitter

 

The role of relational categories in mind, brain and education by Dr Micah Goldwater

Dr. Micah Goldwater from the University of Sydney presented a trio of studies from his lab which have taken different approaches to studying how people use relational categories and analogies in learning.

He says ‘For decades, cognitive lab-based research on category and concept learning, and education research on learning in the classroom have been disconnected in many crucial ways. Even for the moment forgetting the sociocultural, and motivational differences in the two distinct settings, the nature of the concepts to be learned are typically of two distinct kinds. Cognitive research has focussed on how people learn to categorise objects by their intrinsic features – although key concepts in education are about the extrinsic relations between objects and events. For example, consider catalysts and reagents. These labels classify molecules not by their intrinsic features but the roles they play in chemical reactions. In my work, I have argued that a focus on relational categories can help bridge the gap between cognitive and educational research. In my talk, I presented basic cognitive research on the representation and learning of relational categories, how relational category learning is implemented in the brain, and classroom research that leverages how relational categories are learned to improve STEM education.

You can access the full papers here and here and you can stay up to date with Micah’s work via his Sydney lab or by following him on @Mic__G on Twitter

Imitation and sensorimotor learning in autism by Dr Spencer Hayes

spencer-hayesAutism spectrum disorder is a neurodevelopmental condition characterised by differences in restricted, repetitive patterns of behaviour, interests or activities, and persistent deficits in social communication and social interaction. In addition to these core characteristics, autistic people show differences in sensorimotor functioning – such as gait, motor planning, motor learning, and imitation. Whilst autistic people imitate the goal of an action (e.g., picking up a cup), it has been reported for decades that autistic people show behavioural differences associated with imitating observed movement execution properties that constrain/describe the movement (e.g., speed of a movement). It’s thought that this behavioural difference is  underpinned by autism-specific sensorimotor processes involved in mapping self-other actions.

In this talk, I reported data from a series of autism studies (published and under review) from our lab that examined the imitation of biological motion kinematics. The data showed that autistic adults successfully imitated novel biological kinematics during voluntary imitation. These positive effects only occurred when participants imitated the model in a predictable blocked practice trial order (same model on a trial-by-trial basis), rather than a random practice trial where the different models were imitated across trials. This blocked practice order seems to allow the integration of observed biological motion with the executed sensorimotor information.

pldIn addition to imitation learning, we also reported data indicating that although autistic adults acquired visuomotor sequence tasks across a period of practice-with-feedback, the executed movements were less accurate and more variable than in non-autistic adults. Examination of movement kinematics indicated the underlying sensorimotor control processes associated with movement planning and feedforward control were less effective than non-autistic learners. But importantly, over practice movement variability was reduced, suggesting intact operational sensorimotor processing.

Taken together, the data indicate that whilst there are some differences in the function of the sensorimotor system in autism that leads to deficits in imitation learning, and more variable motor execution, the practice effects show these differences can be ameliorated with training. Understanding these practice effects might therefore offer opportunities to develop motor based interventions involving physical activity and dyadic play that supports motor-social interactions.

Papers:

Low Fidelity Imitation of Atypical Biological Kinematics in Autism Spectrum Disorders Is Modulated by Self-Generated Selective Attention

Sensorimotor learning and associated visual perception are intact but unrelated in autism spectrum disorder

If you cannot access the papers, please feel free to contact Spencer to get a copy. His e-mails is spencer.hayes@ucl.ac.uk.

Dr Spencer Hayes, Department of Psychology and Human Development, UCL