Finding numbers hard – facts and myths about dyscalculia

number-confusion

 

What is dyscalculia?

Many people may struggle to develop strong mathematical abilities for many different reasons and thus mathematical difficulties are best thought of as a continuum (BDA, 2019). Dyscalculia falls on one end of that continuum and is a specific learning difficulty that affects a person’s ability to understand numerical information and perform mathematical operations (American Psychiatric Association, 2013).

Watch our explainer video

Here’s a video we produced as part of our NeuroSENse project

How is dyscalculia defined?

Although definitions may vary,  individuals with dyscalculia may have difficulty with mental maths, trouble understanding mathematical concepts, difficulty with sequencing and organising information, and challenges with time and money management. These difficulties manifest during the early school years and must persist for at least 6 months to be diagnosed, according to DSM-V criteria. In addition, these learning difficulties cannot be attributed to intellectual disabilities, developmental disorders, or neurological or motor disorders. While dyscalculia is often diagnosed in childhood, it can also affect adolescents and adults.

How common is it?

Prevalence rates of dyscalculia have proven difficult to ascertain given that different inclusion criteria for dyscalculia are often used (Szűcs & Goswami, 2013). Based on a small number of previous studies, the prevalence of dyscalculia has been estimated to range between 1.3% and 10% of the population (Devine et al., 2013). This is equivalent to roughly 3 children in every class of 30 children, making it a relatively common condition that can affect people of all levels of intelligence.

How is dyscalculia diagnosed?

Dyscalculia can be diagnosed through a comprehensive evaluation by a qualified professional, and there are strategies and interventions that can help individuals with dyscalculia improve their mathematical skills and make progress.

Dyscalculia is not a neuromyth. The exact causes of dyscalculia are not yet fully understood, but researchers believe that there may be a combination of genetic, environmental, and brain-related factors that contribute to the condition (Van Herwegen, 2020). It is important to understand the facts about dyscalculia to provide appropriate support and accommodations for individuals who may have this condition.

Yet, there are several common misconceptions (neuromyths) about dyscalculia. Here are our top 5 myths!

Myths about dyscalculia

Neuromyth 1: If a person struggles with mathematics they have dyscalculia

This is not necessarily the case. Dyscalculia is a specific learning difficulty that affects an individual’s ability to understand and perform mathematical operations. This it is not the same as simply having difficulties with mathematics. A child may struggle with mathematics for a myriad of reasons, including lack of interest, poor teaching, or the curriculum being too delivered too quickly for their capacity. In addition, maths anxiety can be a contributing factor to difficulties with maths, but that doesn’t mean people with maths anxiety necessarily have dyscalculia (Devine et al., 2018). Most people with dyscalculia have specific mathematical difficulties such as understanding how numbers relate to each other (number sense), memorising and retrieving numerical facts as well as make counting errors.

Neuromyth 2: Individuals who are dyscalculic usually only have problems with numbers and can read and write at typical levels

Individuals with dyscalculia typically experience difficulties with their working memory and visuo-spatial skills (Kroesbergen et al., 2022). As such, dyscalculia impacts all areas of the curriculum, not just mathematics. In addition, up to 20-60% of those with dyscalculia also have other learning difficulties, such as, ADHD, dyslexia, and dyspraxia (Morsanyi et al., 2018; von Aster & Shalev, 2007), with co-occurrence of maths and reading difficulties as high as 70% (Moll et, al, 2019). This can mean individuals with dyscalculia also have problems with attention, reading and writing. It is thought that the overlap between dyscalculia and other learning difficulties is caused by shared difficulties with procedural learning (Evans & Ullman, 2016), the learning and control of skills and habits.

Neuromyth 3: Individuals with dyscalculia can be best helped by teaching them to remember number facts

Difficulties with number facts is only one aspect of dyscalculia. Although the actual cause of dyscalculia has not yet been established, many individuals with dyscalculia show difficulties  with reasoning about quantities, and with a sense of what numbers represent (Butterworth, 2018). As such, they may need targeted interventions and support to succeed in academic and everyday life. Additionally, accommodations such as extra time for assessments, use of a calculator, or modifications to assignments can help students with dyscalculia succeed in the maths curriculum (Fuchs et al., 2008). While there are strategies and interventions that can help individuals with dyscalculia improve their maths skills, there is no cure for dyscalculia, which is a lifelong difficulty.

Neuromyth 4: It is often thought that individuals with dyscalculia are impaired across the entire maths curriculum

Indeed, most individuals with dyscalculia may struggle with basic arithmetic, number sense, and mathematical reasoning, which can impact their ability to learn and apply maths concepts across different areas of the curriculum. Anecdotal evidence suggests that some individuals with dyscalculia can be very good at geometry and algebra but there is scant evidence on the knowledge of geometry and algebra in individuals with dyscalculia. It is important to note that the severity and scope of dyscalculia can vary from person to person (see for example studies that have examined the existence of sub-groups within dyscalculia: Bartelet et al, 2014; Costa et al., 2018). While most people with dyscalculia struggle with many different mathematical concepts and procedures, some individuals with dyscalculia may have strengths in particular areas of maths and with good teaching and practice individuals with dyscalculia can make progress in maths, especially if targeted early intervention is provided.

Neuromyth 5: The dyscalculic brain is wired differently, which causes problems with maths but is often associated with strengths like creativity, strategic thinking, and intuitive thinking

There is currently no scientific evidence to support the claim that people with dyscalculia are more creative than those without dyscalculia. Dyscalculia is a learning difficulty that affects a person’s ability to understand and work with numbers. It does not necessarily affect a person’s creativity or artistic abilities. However, it is worth noting that people with dyscalculia may have developed compensatory strategies to deal with their difficulties in mathematics, which could enhance their creativity in other areas. For example, they may have developed stronger verbal and visual reasoning skills, or they may have developed a more intuitive approach to problem-solving. These compensatory strategies could potentially translate into enhanced creativity in certain domains. Nevertheless, it is important to recognise that dyscalculia is a real and significant learning difficulty that can have a negative impact on a person’s academic and professional success. It is essential to provide appropriate support and accommodations for individuals with dyscalculia to help them overcome their challenges and reach their full potential, regardless of their creativity levels.

Here’s your take home

In sum, although the exact causes of dyscalculia are not yet fully understood, dyscalculia can have a profound impact on people’s lives, especially in terms of educational outcomes and financial success. Early intervention is required to help people with dyscalculia to achieve their full mathematical potential. However, neuromyths can prevent timely diagnosis, create stigma and impact on intervention practices (Gini et al., 2020) and thus, it is important to continue our understanding of dyscalculia and reflect on any beliefs, knowledge and practices. Further research on dyscalculia especially to how it manifests over time is required.

References

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edition: DSM-5 (5th ed.). American Psychiatric Publishing.

Bartelet, D., Ansari, D., Vaessen, A., & Blomert, L. (2014). Cognitive subtypes of mathematics learning difficulties in primary education. Research in Developmental Disabilities, 35(3), 657-670. doi: 10.1016/j.ridd.2013.12.010.

Butterworth, B. (2018). Dyscalculia: From science to education. Routledge.

Costa, H.M., Nicholson, B., Donlan, C., & Van Herwegen, J. (2018). Low performance on mathematical tasks in preschoolers : the importance of domain-general and domain-specific abilities. Journal of Intellectual Disability Research, 62(4), 292-302.

Devine, A., Soltész, F., Nobes, A., Goswami, U., & Szűcs, D. (2013). Gender differences in developmental dyscalculia depend on diagnostic criteria. Learning and Instruction, 27, 31–39. https://doi.org/10.1016/j.learninstruc.2013.02.004

Devine, A., Hill, F., Carey, E. and Szűcs, D. (2018) Cognitive and emotional math problems largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety. Journal of Educational Psychology, 110(3): 431–44.

Evans, M. & Ullman, M.T. (2016). An extension of the procedural deficit hypothesis from developmental language disorders to mathematical disability. Frontiers in Psychology 7 ,1-9.

Fuchs, L. S., Fuchs, D., Powell, S. R., Seethaler, P. M., Cirino, P. T., & Fletcher, J. M. (2008). Intensive Intervention for Students with Mathematics Disabilities: Seven Principles of Effective Practice. Learning Disability Quarterly, 31(2), 79- 92. https://doi.org/10.2307/20528819

Gini, S., Knowland, V., Thomas, M.S.C. & Van Herwegen, J. (2021). Neuromyths about neurodevelopmental disorders: Misconceptions by educators and the general public. Mind, Brain & Education, 15(4), 289-298.

Kroesbergen, E. H., Huijsmans, M. D. E., & Friso-van den Bos, I. (2022). A Meta-Analysis on the Differences in Mathematical and Cognitive Skills Between Individuals With and Without Mathematical Learning Disabilities. Review of Educational Research0(0). https://doi.org/10.3102/00346543221132773

Moll, K., Landerl, K., Snowling, M. J., & Schulte-Körne, G. (2019). Understanding comorbidity of learning disorders: Task-dependent estimates of prevalence. Journal of Child Psychology and Psychiatry, 60(3), 286–294. https://doi.org/10.1111/jcpp.12965

Morsanyi, K., van Bers, B.M.C.W., McCormack, T., & McGourty, J. (2018). The prevalence of specific learning disorder in mathematics and comorbidity with other developmental disorders in primary school-age children, British Journal of Psychology, 109(4), 917-940, ISSN: 0007-1269. DOI: 10.1111/bjop.12322.

Szűcs, D., & Goswami, U. (2013). Developmental dyscalculia: Fresh perspectives. Trends in Neuroscience and Education, 2(2), 33–37. https://doi.org/10.1016/j.tine.2013.06.004

Van Herwegen, J. (2020). Math Disorder. In: S. Hupp & J. Jewell. The Encyclopedia of Child and Adolescent Development. John Wiley & Sons: Chichester, UK.

von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine and Child Neurology49(11), 868–873. https://doi.org/10.1111/j.1469-8749.2007.00868.x

Leave a Reply

Your email address will not be published. Required fields are marked *